
Learning to Project and Binarise for Hashing Based
Approximate Nearest Neighbour Search

Sean Moran
sean.moran@glasgow.ac.uk
University of Glasgow, UK

ABSTRACT

In this paper we focus on improving the effectiveness of
hashing-based approximate nearest neighbour search. Gen-
erating similarity preserving hashcodes for images has been
shown to be an effective and efficient method for search-
ing through large datasets. Hashcode generation generally
involves two steps: bucketing the input feature space with
a set of hyperplanes, followed by quantising the projection
of the data-points onto the normal vectors to those hyper-
planes. This procedure results in the makeup of the hash-
codes depending on the positions of the data-points with
respect to the hyperplanes in the feature space, allowing a
degree of locality to be encoded into the hashcodes. In this
paper we study the effect of learning both the hyperplanes
and the thresholds as part of the same model. Most previ-
ous research either learn the hyperplanes assuming a fixed
set of thresholds, or vice-versa. In our experiments over
two standard image datasets we find statistically significant
increases in retrieval effectiveness versus a host of state-of-
the-art data-dependent and independent hashing models.

1. INTRODUCTION
Nearest neighbour search is the problem of finding the

most similar data-points to a query in a database, and is
a fundamental operation that has found wide applicability
in many fields of study, ranging from Information Retrieval
(IR) to Bioinformatics. Hashing-based approximate near-
est neighbour (ANN) search methods permit the nearest
neighbours to a query data-point to be retrieved in constant
time [5]. Hashing permits constant time search per query
by condensing both the database and the query into fixed-
length compact binary hashcodes or fingerprints. The hash-
codes exhibit the neighbourhood preserving property that
similar data-points will be assigned similar (low Hamming
distance) hashcodes. To compute these hashcodes, many
hashing models partition the input feature space into dis-
joint regions with hyperplanes [1, 6, 9]. In the case of hy-
perplanes the polytope-shaped regions formed by the inter-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’16, July 17 - 21, 2016, Pisa, Italy

c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4069-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2911451.2914766

secting hyperplanes constitute the hashtable buckets. The
hashtable key for a data-point is generated by simply de-
termining which side of the hyperplanes the data-point lies.
Depending on which side it falls a ‘0’ or a ‘1’ is appended
to the hashcode for that data-point. By repeating this pro-
cedure for each hyperplane we can build up a hashcode for
each data-point that is the same length as the number of
hyperplanes partitioning the space.

Algorithmically this hashcode generation procedure can
be accomplished in two separate steps performed in a pipeline:
projection followed by quantisation. Projection involves a
dot product of the feature vector representation of a data-
point (e.g. bag of visual words) onto the hyperplane normal
vectors positioned either randomly or in data-aware posi-
tions in the data-space. The hyperplanes should ideally par-
tition the space in a manner that gives a higher likelihood
that similar data points will fall within the same region,
and therefore assigned the same hashcode. In the second
step the real-valued projections are quantised into binary
(‘0’ or ‘1’) by thresholding the corresponding projected di-
mensions1 typically with a single threshold placed at zero
for mean centered data.

In our contribution we depart from most previous work
and study the effect of learning both of the hyperplanes
and the quantisation thresholds as part of the same hashing
model. On image retrieval experiments over standard col-
lections we demonstrate that learning both parameters can
achieve a significant increase in retrieval effectiveness versus
models that learn either parameter in isolation.

2. RELATEDWORK
In the most closely related past research authors have gen-

erally focused on either learning the hashing hyperplanes [1,
4, 6] or the quantisation thresholds [2, 3, 7, 8] based on
the distribution of the data. Seminal approaches for data-
dependent hyperplane learning either solving an eigenvalue
problem to generate a set of orthogonal hyperplanes, for ex-
ample using Principal Components Analysis (PCA) [9], or
frame a custom objective functions that uses pairwise labels
to appropriately position the hyperplanes within the feature
space [1]. Many of these models for hyperplane learning use
a single threshold placed directly at zero (for mean centered
data) to quantise the projections into binary. This approach
is commonly known as Single Bit Quantisation (SBQ). Re-
cently there has been significant interest in improving on

1We define a projected dimension as the collection of the
real-valued projections (dot products) of all data-points onto
the normal vector to a hyperplane.

(a) Initialisation (b) Regularisation

Figure 1: Initialisation: 2-bit hashcodes initialised by LSH. Coloured shapes indicated data-points, and those with the same
shape and colour are 1-NNs. Regularisation (Step 1): The hashcodes are regularised over the adjacency matrix. Lines
between points indicate a nearest neighbour relationship. The hashcodes are updated as shown by the directed arrows.

SBQ by learning one or more thresholds to quantise pro-
jections [2, 3, 8, 7]. These quantisation models use either
an unsupervised objective such as k-means or squared error
minimisation to learn a good set of thresholds for each pro-
jected dimension [7, 8], or propose a semi-supervised objec-
tive that takes into consideration the neighbourhood struc-
ture between the data-points in the input feature space [2, 3].

3. LEARNINGTOPROJECTANDBINARISE

3.1 Overview of the Approach
We couple the graph regularised projection model (GRH)

of [1] and the semi-supervised quantisation model (NPQ) of
[2]. The hyperplanes are learnt using GRH and the projec-
tions quantised using NPQ. We aim to answer the following
research question:

RQ-1: Can learning the hashing hyperplanes and multiple

quantisation thresholds as part of the same model give a
higher retrieval effectiveness than a model which learns ei-
ther the hyperplanes or thresholds?

Initially, the model is first run for M iterations, in which
the following three steps (1-3) are applied per iteration:

• 1) Regularisation: Regularise the hashcodes using
Equation (1):

Bm ← sgn
`

α SD−1Bm−1 + (1−α)B0

´

(1)

Bm ∈ {−1, 1}Ntrd×K are the hashcodes for the Ntrd

training data-points (Ntrd ≪ N) at iteration m, α ∈
[0, 1] is the GRH interpolation parameter, S is the
Ntrd × Ntrd adjacency matrix, which has Sij=1 if xi

xj are true nearest neighbours and 0 otherwise, D is a
diagonal matrix containing the degree of each node in
the graph. B0 is initialised using any existing projec-
tion function e.g. PCA.

• 2) Partitioning: Solve K constrained optimisation
problems in Equation (2), where K is the length of
the hashcodes:

for k = 1..K : min ||wk||
2 + C

PNtrd

i=1 ξik

s.t. Bik(w⊺

kxi) ≥ 1 − ξik for i = 1..Ntrd(2)

wk ∈ R
D is the hyperplane normal vector, ξik ∈ R+

are slack variables that allow points xi to fall on the
wrong side of hyperplane hk and C ∈ R+ is the flexi-
bility of margin. We use liblinear [10] as our solver.

• 3) Prediction: Compute the Ntrd dot products in
Equation (3):

yk
i = w⊺

kxi for i= {1. . .Ntrd} and k= {1. . .K} (3)

SBQ is applied to generate the updated hashcode ma-
trix Bm. We repeat steps 1-3 for M iterations. This
is the GRH model of [1].

Having learnt the projections of our data-points in steps 1-3,
we then quantise the learnt projections using NPQ [2]:

• 4) Quantisation: Quantise yk with thresholds tk =
[tk1, tk2, . . . , tkT] learnt by optimising Jnpq(tk) in Equa-
tion (4):

Jnpq(tk) = F1(tk) (4)

Here T ∈ [1, 3, 7, 15] is the number of thresholds per
projected dimension and F1(tk) is a supervised term
that leverages the neighbourhood structure encoded
in S. For a fixed set of thresholds tk = [tk1 . . . tkT]
we define a per-projected dimension indicator matrix
Pk ∈ {0, 1}Ntrd×Ntrd with the property given in Equa-
tion (5):

P k
ij =

(

1, if ∃γ s.t. tkγ ≤ (yk
i , yk

j) < tk(γ+1)

0, otherwise.

(5)

The index γ ∈ Z spans the range: 0 ≤ γ ≤ T , where
the scalar quantity T denotes the total number of thresh-
olds for a projected dimension. Intuitively, matrix Pk

indicates whether or not the projections (yk
i , yk

j) of
any pair of data-points (xi,xj) fall within the same
thresholded region of the projected dimension yk ∈
R

Ntrd . Given thresholds [tk1 . . . tkT], the algorithm
counts true positives (TP), false negatives (FN) and
false positives (FP) (Equations (6)-(8)).

(a) Partitioning (b) Quantisation

Figure 2: Partitioning step (Step 2): hyperplanes are positioned to separate opposing bits (-1,1) with maximum margin.
Quantisation step (Step 4) using the projections for hyperplane h1 as an example. The top-most diagram shows the
quantisation obtained with a threshold placed at zero. Point a is on the wrong side of the threshold. The bottom diagram
shows the result obtained by optimising the threshold t1 to maximise pairwise F1. In this case the threshold is shifted so that
point a receives the same bits as its neighbours.

TP =
1

2

X

ij

PijSij =
1

2
‖P ◦ S‖1 (6)

FN =
1

2

X

ij

Sij − TP =
1

2
‖S‖1 − TP (7)

FP =
1

2

X

ij

Pij − TP =
1

2
‖P‖1 − TP (8)

where ◦ denotes the Hadamard product and ‖.‖1 is
the L1 matrix norm defined as ‖X‖1 =

P

ij
|Xij |. TP

is the number of positive pairs that are found within
the same thresholded region, FP is the negative pairs
found within the same region, and FN are the positive
pairs found in different regions. The counts are com-
bined using the familiar F1-measure (Equation (9)):

F1(tk) =
2‖P ◦ S‖1

‖S‖1 + ‖P‖1
(9)

Equation (9) is directly maximised using Evolution-
ary Algorithms [2], and encourages a clustering of the
projected dimension that respects the constraints in S.

Figures 1-2 provide an intuitive overview of steps 1,2 and 4.

4. EXPERIMENTAL EVALUATION

4.1 Experimental Setup
Groundtruth: We define the groundtruth nearest neigh-
bours using the ǫ-NN paradigm2, that is if a data-point is

2ǫ is set to be the average L2 distance to the 50th nearest
neighbour. This parameter setting follows previous work [7,
8].

within a radius of ǫ to the query then it is deemed to be
true nearest neighbour for the purposes of evaluation ([2, 6,
8, 7]). To evaluate the quality of the hashcodes, database
images are ranked based on the Hamming distance to the
hashcodes of the queries. The resulting ranked lists are
used to compute the area under the precision recall curve
(AUPRC). The higher the AUPRC, the better the quality
of the hashcodes.

Parameter Optimisation: We use three thresholds (T =
3) per projected dimension for NPQ and use the Manhat-
tan hashing codebook and ranking strategy [8]. This corre-
sponds to a 2-bit per projected dimension encoding, which
means that K/2 hyperplanes are learnt for a K-bit hashcode.
For GRH we use a held out validation dataset to find the
number of iterations M ∈ Z+, the interpolation parameter
α ∈ [0, 1] and the flexibility of margin C ∈ R+ for the linear
SVM. Our parameter tuning strategy for the GRH model is
as follows: firstly, we set C = 1 and perform a grid search
over M ∈ {1 . . . 20} and α ∈ {0.1, . . . , 0.9, 1.0}, selecting the
setting that gives the highest validation AUPRC. To find M
we stop the sweep when the validation dataset AUPRC falls
for the first time, and set M to be the number of the penul-
timate iteration. Finally, we then find the optimal value for
the flexibility of margin C ∈ {0.01, 0.1, 1.0, 10, 100}.

Datasets: CIFAR-103 and Tiny 100K image [8] datasets
both encoded with GIST features. To define the test queries
we randomly sample Nteq=1, 000 data points with the re-
maining points forming the database for retrieval and the
training dataset for learning the hyperplanes and quantisa-
tion thresholds. We set Ntrd=2, 000 for learning. Reported
AUPRC figures are the average over 10 independent runs.

Initialisation Methods: LSH [5], Shift-invariant Kernel-
based Locality-Sensitive Hashing (SIKH) [6], PCA Hashing
(PCAH) [4] and Spectral Hashing (SH) [9].

3https://www.cs.toronto.edu/˜kriz/cifar.html

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

16 32 48 64 80 96 112 128

T
es

t
A

U
P

R
C

Bits

LSH+GRH+NPQ
LSH+GRH+SBQ

LSH+NPQ

(a) LSH projections

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

16 32 48 64 80 96 112 128

T
es

t
A

U
P

R
C

Bits

PCA+GRH+NPQ
PCA+GRH+SBQ

PCA+NPQ

(b) PCA projections

Figure 3: The effect of learning the hashing hyperplanes and quantisation thresholds as part of the same model (GRH+NPQ)
versus independently (GRH+SBQ, SBQ) over a haschode length of 16-128 bits on the CIFAR-10 dataset for LSH and PCA.
Bars show standard error of the mean.

Tiny 100K
SBQ NPQ GRH VBQ GRH+NPQ

LSH 0.3623 0.4970 0.4791 0.4796 0.5680NN

SH 0.1431 0.4519 0.4837 0.5014 0.5827NN

PCA 0.0439 0.3785 0.4749 0.5116 0.5791NN

SKLSH 0.1585 0.4357 0.4337 0.5198 0.5309

Table 1: AUPRC on the Tiny 100K dataset with a hash-
code length of 32 bits. NN indicates statistical significance
(Wilcoxon signed rank test, p < 0.01) when comparing
GRH+NPQ to the next best model.

4.2 Experimental Results
The Hamming ranking retrieval results are shown in Ta-

bles 1-2 and Figures 3(a)-(b). We observe in Tables 1-2 that
learning the hyperplanes and thresholds as part of the same
combined model (GRH+NPQ) yields the highest retrieval
effectiveness compared to learning the hyperplanes (GRH)
or the thresholds (NPQ, VBQ) independently. For example,
for LSH projections GRH+NPQ gains a relative increase in
AUPRC of 60% over NPQ and 28% over GRH on CIFAR-10.
Furthermore, the combination of GRH+NPQ outperforms
the adaptive thresholds allocation model (VBQ) of [3] by a
relative margin of 27%. Each of these increases are found
to be statistically significant using a Wilcoxon signed rank
test (p-value < 0.01). We find that the superior retrieval ef-
fectiveness of GRH+NPQ is maintained when the hashcode
length is varied between 16-128 bits for both LSH and PCA
projections (Figure 3(a)-(b)) on CIFAR-10. In most cases,
significant increases in effectiveness are found for other pop-
ular projection functions including SH and SKLSH across
both datasets (Tables 1-2). Based on these experimental
results we can answer RQ-1 in the affirmative.

5. CONCLUSIONS
In this paper we have explored the benefits of learning the

hashing hyperplanes and multiple quantisation thresholds as
part of the same hashing model. We introduce a simple cou-
pling of two state-of-the-art models for projection function
and quantisation threshold learning [1, 2] and find statisti-

CIFAR-10
SBQ NPQ GRH VBQ GRH+NPQ

LSH 0.0954 0.1621 0.2023 0.2035 0.2593NN

SH 0.0626 0.1834 0.2147 0.2380 0.2958NN

PCA 0.0387 0.1660 0.2186 0.2579 0.2791NN

SKLSH 0.0513 0.1063 0.1652 0.2122 0.2566NN

Table 2: AUPRC on the CIFAR-10 dataset with a hash-
code length of 32 bits.

cally significant increases in retrieval effectiveness. Future
research will explore a tighter coupling between the learning
of the hyperplanes and quantisation thresholds by creating
a unified objective function encompassing both parameters
that could be jointly learnt using gradient-based optimisers.

6. ACKNOWLEDGEMENTS
The author would like to thank Victor Lavrenko for his

valuable feedback on this research.

7. REFERENCES
[1] S. Moran and V. Lavrenko. Graph Regularised Hashing. In

Proc. ECIR, 2015.

[2] S. Moran, V. Lavrenko, and M. Osborne. Neighbourhood
Preserving Quantisation for LSH. In Proc. SIGIR, 2013.

[3] S. Moran, V. Lavrenko, and M. Osborne. Variable Bit
Quantisation for LSH. In Proc. ACL, 2013.

[4] J. Wang, S. Kumar, and SF. Chang. Semi-Supervised
Hashing for Large-Scale Search. In Proc. PAMI, 2012.

[5] P. Indyk and R. Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In Proc.
STOC, 1998.

[6] M. Raginsky and S. Lazebnik. Locality-sensitive binary
codes from shift-invariant kernels. In Proc. NIPS, 2009.

[7] W. Kong and W. Li. Double-Bit Quantisation for Hashing.
In Proc. AAAI, 2012.

[8] W. Kong, W. Li, and M. Guo. Manhattan hashing for
large-scale image retrieval. In Proc. SIGIR, 2012.

[9] Y. Weiss, A. Torralba, and R. Fergus. Spectral Hashing. In
Proc. NIPS, 2008.

[10] Rong-En Fan et al. LIBLINEAR: A Library for Large
Linear Classification. In JMLR, 9, 2008.

